LinkedIn
Copied!

Table of Contents

Correcting identified topics

If you want to ensure that Pega Email Bot is accurately detecting the topic and intent of the emails it receives, you can review and correct the topics in the training data records. You train the system by correcting the identified topics in each training record, and then rebuilding the text analytics model with the updated information. This improves the accuracy of the cases and responses that the email bot suggests when it detects the relevant topic.

For example, when a user sends an email requesting a car insurance quote, the email bot detects car insurance as the topic and suggests the Car Insurance case during the email triage stage.
Enable recording of training data. For more information, see Enabling the training data recording for an email bot.
  1. In the header of Dev Studio, click the name of the application, and then click Channels and interfaces.

  2. In the Current channel interfaces section, click the icon that represents your existing Email channel.

  3. In the Email channel, click the Training data tab.

  4. Optional:

    If you configure multiple languages for the email bot, to filter data records by a language, in the Language list, select a language.

    To display data records only detected in the French language, select French.
  5. In the list of training records, select a data record.

    The NLP analysis section displays the detected topic for the selected training data record.
  6. In the Topic field in the NLP analysis section, press the Down arrow key, and then select a more appropriate topic for the training record.

    To correct a training record so that its intent relates to car insurance, select Car insurance.
  7. Optional:

    To use this training record to improve the artificial intelligence of the email bot, in the Review training data section, click Mark reviewed.

    Create at least 15 records in the training sample to improve detection of the right information in emails.

  8. Optional:

    To correct the identified topics in additional training records, repeat steps 4 through 7.

  9. Click Save.

Teach the email bot the reviewed and corrected training records by rebuilding the text analytics model. For more information, see Applying changes to a text analytics model for an email bot.

  • Editing data records

    When you enable the recording of training data and Pega Email Bot receives emails, the system saves the content of each email as a training data record. You can then edit this training data before it is added to the model, to remove irrelevant content and fix grammatical or formatting errors in the record. This ensures that your training data is of high quality, so that the text analytics model is only trained using the most relevant, correct topics, entities, and language.

  • Correcting identified languages

    To train Pega Email Bot to detect the correct language in emails, select the language for a training record, and then build a text analytics model for the system. Correcting the detected language in training data ensures that the email bot selects the right languages to perform text analysis of emails.

  • Correcting existing entities

    Since Pega Email Bot does not automatically know how to respond, to ensure that the system detects the right entities in emails, correct the wrongly detected entities in the training data. When the email bot learns to detect the correct topics, entities, and language in emails, the artificial intelligence algorithms provide better responses to users.

  • Creating training data manually for an email bot

    To ensure that Pega Email Bot interprets emails in the correct way, manually create training records in the system. Training records provide valuable information for the email bot that strengthens the artificial intelligence algorithms and improves the accuracy of your text analytics model. By training the model, you ensure that the email bot detects the correct topics, entities, and language.

  • Correcting training data in an email bot

    When you want to improve the ability of Pega Email Bot to detect topics, language, and entities, you can review and correct the training data in the system. By correcting the training data and rebuilding the text analytics model, you improve the artificial intelligence of the email bot and teach it to more accurately detect the desired information in emails. The system can then suggest the right business case or email response, based on the detected information.

Have a question? Get answers now.

Visit the Collaboration Center to ask questions, engage in discussions, share ideas, and help others.