Selenium Starter Kit

Extending Base Framework

Developer’s Guide

Extending Base Framework

Developer’s Guide

Introduction

This document describes guidelines for extending Pega base framework shipped with the Selenium

Starter Kit to support testing custom Pega applications. A sample test framework project attached

below is used to guide through the extension process. Save this project and import it into your IDE.
I
T 1

SampleTestFramework.zip

To install the sample project, follow the Selenium Starter Kit - Setup Guide.pdf sections Setting Up
Environment = System Environment and Setting Up Environment = Eclipse. Once done, follow
Setting Up Tests section to import the sample test framework project after extracting the above zip
file. Please not that the project shown in the Setup Guide is different to the one mentioned here.

The base Ul testing framework in the Selenium Starter Kit is a framework built on Selenium
WebDriver. It is developed to make automation of Pega applications easier. It is achieved by creating
wrappers around Selenium WebDriver classes like WebDriver, WebElement e.t.c. Apart from
wrapping Selenium classes there are lots of classes added like TopDocument, Frame,
WaitHandler, BaseTestCase etc which would be introduced in the document wherever needed.

The framework is a Cucumber-based and employs the Page Object Model to ensure minimal
maintenance due to Ul changes in the application. Let’s go through the workflow on how to extend
the framework and start automating a test

Sample Test Framework and Application Used:

For the sample framework design, the application used is Sales Automation. When logged in to the
application, a sales manager portal would get displayed which has different links to open in its left
side navigation menu like Forecast, Spaces, Accounts, Organizations etc. When clicked on any link
the respective page would be opened in a new frame in the portal, which we call it as a Frame page

+ aate Forecast

Details Close plans

Left Hand @ v | e

North East Narth East v Y2019 Advanced

Unweighted RS0
Forecast category Q1 Q2 Q3 Q4 Tatal
Closed + Commit p o

Goal 100,000 100,000 100,000 0 300,000

Closed 73 a [o

& Forecast Commit 280,000 A []

4QSubtotas 57100 "

Not forecasted 3 2,200 0 0
Recents

BUBusiness Lead 2 4Q total 609,000 4

BUBusiness Lead
10

Design Model

The Ul testing framework shipped with this Sample Framework is fundamentally built using the Page
Object Design Pattern. Implementing that pattern results in a library of page objects corresponding
to various pages of the web application being tests. These page objects provide the interface to
interact with Ul elements that belong to that page.

For the user to be able to launch a browser, the framework provides TestBase class out of the box.
Any class which extends TestBase class will be the starting point while a user starts running his test.
The sample framework provides a sample class named MyAppTestEnvironment to do this job.
Alongside creating a class which extends Testbase, use should also create another class which
extends Browserlmpl which comes out of the box from the framework. This browser class provides
out of the box methods for login and logoff operations which works for most of the pega
applications. Apart from login/logoff we also provide options here like refresh, executelavaScript,
open a url, close, switchToWindow etc.

Anyone who wants to use base framework, for them we recommend writing their own
MyAppBrowser class and MyAppTestEnvironment class. These classes are available for your
reference at src/main/java/com.pega.test.pega_sample_testframework package as mentioned in
below figure. User must Change MyApp to its application name while naming the classes.

https://github.com/SeleniumHQ/selenium/wiki/PageObjects
https://github.com/SeleniumHQ/selenium/wiki/PageObjects

v =% pega-sample-testframewaork
~ [sre/main/java
v B4 com.pega.crm
w {3 portal
SalesManagerPortal java
~ B workobjects
Forecast.java
Space_PegaSecialGroup.java
Spaces.java
w [P sroftest/resources
~ B features
@ forecastTest.feature
@ sarnpleTest.feature
@ spaces [est.feature
v B sroftest/java
w i (default package)
J| RunCucumberTest.java

~ tH com.pega.test.pega_sample_testframework

The MyApp in
these files to be
replaced with

[J] MyAppBrowser.java
[J] MyAppObjectsBean.java

[J] MylppTestEnvironment,java
name specific to

_m SalesManagerStepDefs.java user's applicaﬂﬂn
1| Space_PegaSocialGroupStepDefs,java
+J| SpacesStepDefs.java
+J| TestStepDefs.java

|¥X] logback-testxml

1f| ForecastStepDefs,java

B\ Maven Dependencies

B JRE Systemn Library [jdk1.2.0_202]
= binaries

= data

= lib

= logs

= src

[target

|¥] extent-config.xml

M| porm.sxml

MyAppTestEnvironment.java

The MyAppTestEnvironment class must extend the TestBase class which internally extends from
TestEnvironmentimpl class. TestBase and TestEnvironmentlmpl classes are defined in the base
framework.

Override the getBrowser method to return a handle to the browser instance specific to the
Application. In this project the browser class specific to this application is MyAppBrowser.

@ScenaricScoped
public class MyAppTestEnvironment extends TestBasel {

String COPYRIGHT = "Copyright (c) 2814 Pegasystems Inc.”;
String WERSION = "$Id: MyTestEnvironment.java 209838 2016-89-22 B86:52:497 SachinVellanki $";

private Browser browser;
private Scenario scenarioc;

@override
public Browser getBrowser{) { Override the getBrowser method
if (browser == null) { .
browser = new MyAppBrowser(this); from TestEnvironmentimpl

return browser;

This class when instantiated launches the browser based on the properties defined in
global-settings.properties file.
Note: User must replace App with the actual application name for MyAppTestEnvironment class.

global-settings.properties:

Global settings and test requirements are defined in /data/global-settings.properties.
Changing these settings will allow to customize test execution. The following tables show the list of
properties:

Application Information:
Property Description
instance.url URL of the application under test

Browser Configuration:

Property Description
browser.name Name of the browser used for testing. Supported browsers:
e chrome
o firefox
e e
e safari
e htmlunit
chrome.driver Path to the appropriate browser binaries/driver
ie.driver
edge.driver

chrome.driver.linux
isChromeAutoDownload By default, we attempt to download an appropriate chrome driver

automatically through our custom utility. If it fails, set this property
to false and copy the driver manually to binaries folder

Diagnostics & Debug Settings:

Property Description
debug.mode Boolean indicating whether to keep the browser open after
test execution
enable.fullscreen.mode Boolean indicating whether tests run in full screen mode
global.timeout Override maximum wait time for the web elements to load

(secs). Default timeout is 300 seconds.

Test Environment Configuration:
Property Description
hub.url URL to selenium grid hub for Cross Browser Testing.

If this is not set, tests run locally

capabilities Any custom capabilities provided by the external selenium grid providers
like crossbrowsertesting / saucelabs / browserstock.
Multiple capabilities can be provided by separating them with , and :

capabilities=capabilityl:valuel, capability2:value2, capability3:value3,

If there are some common steps that every test case must execute before and after executing the
test steps, then we can use @Before and @After cucumber annotations. Writing these methods are
optional. These methods are provided to give the user the capability to add their own steps in setup
and teardown methods.

{@Before

public void setUp(Scenario scenaric) {
this.scenario = scenario; //this object of scenaric is to send to localizationUtil to take screenshot of every step failure
System.setProperty(“is.one.step.cne.def”, "true");
setUp(scenario, null);

}

protected void setUp(Scehario scenario, String browserName) { o
initializeStatus();
startRecording(scenario); common steps to be executed before each test case can be
configureBrowser(); .
} written into the setUp method
@Aafter
public void tearDown(Scenario scenaric) {
tearDown(scenario, true, alwaysSaveVideo); $ Common steps to be executed after each test
} case can be written in tearDown method

public Scenaric getScenarioc()

1
}

return scenaric;

MyAppBrowser.java

This class defines the browser for a specific application. The MyAppBrowser class must extend
BrowserImpl class which is a base framework class. MyAppBrowser class has methods to do
operation on a browser like login, logout etc.

public class MyAppBrowser extends BrowserImpl {

This class must override getPortal method from BrowserImpl class which returns the object of the
Landing page after Login in to the application. Portal is a page which is the first page after logging
into the application.

For Example, if a user logs into the PRPC application, after logging in the user is landed into the
DesignerStudio page. Thus, we can call this page as a Portal type page as it is the first page
after logging in. Similarly, we can have different portals like SalesManagerPortal,
CaseManagerPortal e.t.c.

One application can have multiple portals and the getPortal method should be the method which
should return the object for any portal class created during framework design.

public <T extends Portal: T getPortal(Class<T> type) {
T portal = null;
String classMName = type.getMame();
if (classMame.contains("SalesManagerPortal™)) {
portal = type.cast(new SalesManagerPortal({testEnv));

h
if(className.equals("SalesRep"})
1
portal = type.cast({new SalesRepPortal(testEnv));
b

return portal;

The return type of the getPortal method is a Portal. All the portals that are defined as page
objects are available at src/main/java/ com.pega.crm.portal. Inthe sample application we
chose if else conditions to differentiate between different portals to return handles for the
respective portal. People who extends this methods can choose any different way to return their
portals

All the other methods except getPortal method are optional in the class. The list of all the methods
can be seen at the end of this document.

Default step definitions in MyAppBrowser class:

The class provides some methods defined out of the box to support basic operations such as logging
in and out of the application.

@Given("~A User logs in with \"(.*?)\" and \"(.*?)\"$")

This step definition is used to login to the application with a specific
user id and password mentioned in the cucumber feature file

Example:
@Given("~A User logs in with \"(.*?)\" and \"(.*?)\"$")
public void login(String username, String password) {

open();
super.login(username, password);

}

Here the login method first calls the open method which will open the browser. Then the
default login method from the base framework BrowserImpl class is called which will do
the logging operation using the provided username and password. We use the default login
from framework since in Pega, all login is same across all Pega applications.

1. @when("~User logs off from portal$")
This step definition is used to perform the logout operation

Example:
@When("~User logs off from portal$")
public void user_logs_off from_portal() {
super.logout();
}

Here the user_logs_off_from_portal method calls the 1logout method from the
BrowserImpl class which will logout from the application

2. @Given("~A User logs in with Administrator credentials$")
This step definition is used to do login as an administrator. It takes the
admin credentials mentioned in users.properties file. This way user can
mask the credentials.
Instead of exposing the credentials in the feature file we can hide it and ask the step

definition to take the data from users.properties file.

v 5:9 pega-sample-testframework
v [sre/main/java
v i} compega.crm.portal
SalesManagerPortal java
f# com.pega.crm.workobjects

v ([sro/test/resources ﬂ.dn'mlst'atv credentials
v i features JADMIN_USER_ID =AutoMarketinghdministrator
& forecasTesteature JADMIN PASSHORD =install1zs!

1) sampleTest feature
v {# src/test/java

thnalyst credentials
v § (defaut package) Fihnalyst credentials

RunCucumberTest java ANALYST_USER_ID =AutoMarketinghnalyst
i compega.test pega_sample testframework JHANALYST USER_ID =morimAnalyst
v i stepdefs MANALYST _PASSWORD =installl23!
1) ForecastStepDefsjava

_m SalesManagerStepDefs java
A1) TestStepDefsjava
1¥] logback-testxml
=\ Maven Dependencies

B\ JRE System Library [jdk1.8.0_151]

(= binaries .
v & Data User must create afile called

2] global-settings properties users.properties to store the login
| TestRunExecutionStatus1.html credentials of the application

= users.properties

iz sre
(= target
|| extent-config.xml

@ pom.xml

Credentials to be stored in users.properties

3. @When("~User logs off from portal$")
public void user_logs_off_from_portal() {
super.logout();

}

Here the user_logs_off from_portal method calls the logout method from the
BrowserImpl class which will logout from the application

In case the login and logout methods of the application are different, although unlikely, user can
override the framework login and logout methods in MyAppBrowser class.

In case, if the login method is overrided, the following lines of code should be added at the end of
login method, which would be used by base framework for synchronization between scripts and the
application under test. Lots of our internal waits depends on these methods.

pegaDriver.getDefaultFrameTabCntDiff(true);
pegaDriver.loadCustomScripts();
ObjectBean.setLoggedInUser(usr);

@verride
public <T extends Portal: T getPortal(Class<T: type) {
T portal = null;
string className = type.getName();
if (className.contains("SalesManagerPortal™)) {
portal = type.cast(new SalesManagerPortal(testEnv));

if({className.equals("SalesRep”))

1
}

return portal;

//portal = type.cast(new SalesRepPortal(testEnv));

}

@Override| e

public Wlid logout() { logout method specific to the
pegabriver.waitForDocStateReady(2); ¢ application
pegalriver.switchTo().defaultContent();

pegabriver.findElement (OPERATOR _MENU).click();
pegabriver.switchTeo().defaultContent();
pegabriver.findElement (LOG_OFF BUTTON).click();

The instance of MyAppTestEnvironment is injected into the constructor of MyAppBrowser. It can be
used to get handles to other relevant objects such as PegalWebDriver, Configuration, Browser.
The methods and description for these classes are provided towards the end of this document
@Inject
public MyAppBrowser(MyAppTestEnvironment testEnv) {
super(testEnv);

this.testEnv = testEnv;
configuration = testEnv.getConfiguration();

}
Page Objects using the Base Ul Test Framework:

As mentioned earlier in this document, the framework is fundamentally built using the Page Object
Design Pattern. We identified 3 type of pages in any pega application which are as follows

1. Portal Pages

These are the landing pages right after the user logs in to the application, i.e the first
page of any application, from where all the navigations take place

2. Frame Pages
These are the pages that gets opened in an IFrame
3. TopDocument Pages

These are the pages that are not under IFrames
Portal Pages in Application:

When the user logs into the application, user is redirected to a landing page. For example, when user
logs into the Sales Automation application using manager credentials, user is redirected into a
landing page. This is considered as a portal page, say, SalesManagerPortal page. Usually the first
landing page after the Login is considered as portal.

The below figure represents the SalesManagerPortal.

https://github.com/SeleniumHQ/selenium/wiki/PageObjects
https://github.com/SeleniumHQ/selenium/wiki/PageObjects

PEGA Sales Automation

search.. a @
Dashboard 3 M

Closed + commit vs goal Top 5 opportunities Quarterly sales comparison

At risk with quota 14% of total pipeline

$70,000

$50,000 L / T ——
$50,000 ’

$40,000

Lead conversions by stage

In any Pega application, all the portals are present on the top page, but not inside any frame. Use

Chrome Developer’s options and navigate to Console tab to see whether the page belongs to the
top page or the frame.

PEGA Sales Automation

¢2) Dashboard
Closed + commit vs goal - Top 5 opportunities
‘ My Work Current quarter
Y
At risk with quota 14% of total pipeline
Spaces

Smoke Detection Systems for Forest Gas

Pulse o Negotiation $70,000
: soa Close date: 12/23/2019

i Organizations g e Window Sensor System for APW Technologies
L 3 Decision $50,000
. Households R Close date: 03/18/2019
$21K ————
i —— HDTVI Outdoor Video Security System for Forest Gas
— 0 Negotiation $50,000
.. Console window on chrome sansany :e“:]'"m qumg‘r’h’;f Close date: 02/15/2019
" developer options
Clossd &4 Closed + Commit &4 Quota Trend Ultra 265 Surveillance KIT for Forest Gas
§ Leads Decision $40,000
I R S R —— Claca data: 12/11/2010
[® @] Element Performance Memory Application Security Audits EditThisCockie
™ g

Default levels ¥

n (=rg
Portal is present on the top

page, not in any frame

It is highly unlikely that the portal will be present inside a frame.

All the portal page objects can be organized in src/main/java/com.pega.crm.portal package. A portal
page must extend PortalImpl class from base framework (Internally Portal also extends
TopDocument as all portals are present under top document only)

public class SalesManagerPortal extends PortalImpl

Every portal class must have a public constructor that accepts TestEnvironment object where the
constructor calls the super class constructor.

public SalesManagerPortal(TestEnvironment testEnv) {
super(testEnv);
}

In the SalesManagerPortal page there is a menu called Forecast, which, when clicked, opens
the Forecast page. To perform this operation the SalesManagerPortal page has openForecast
method, which creates the object of forecast page and returns it.

While creating the PageObject of Forecast, pass the active frame id of the Page and
MyAppTestEnvironment object. Any Page Object which extends a frame would need a framelD
and testenvironment object as its parameters in the constructor.

public class SalesManagerPortal extends PortalImpl{

public static final By FORECAST = By.xpath("//span[text()='Forecast']");
MyAppTestEnvironment testEnv;
public SalesManagerPortal(MyAppTestEnvircnment testEnv) {
super(testEnv);
this.testEnv=testEnv;

h

public Forecast openForecast() {
PegaWebElement element = findElement(FORECAST); openForecast method to open the Forecast

S S AR T - page from SalesManagerPortal
I return new Forecast(getActiveFrameId(true), testEnv);I

}

Passing frame id of forecast page and
MyAppTestEnvironment obj while creating
the object

While trying to identify the locator for forecast, xpath was used, (By.xpath), as it was the best was
the best option available to identify that locator. But the order of precedence would be By.id and
By.name in case the options are available and then use By.cssSelector or By.xpath as the last
options. In case of pega applications, you can also use data-test-ids if enabled for a locator. An
example for using data test id is provided in Spaces page object in the sample application.

getActiveFrameId(true)is a base framework method which will switch to the current active
frame and then return the frame id. If the user passes false as input to getActiveFrameld
method, then the control will not switch to the active frame id and will return the old frame id.

The forecast page is present in a frame. Hence the user must switch to the active frame and then
pass the active frame id while constructing the object.

Since every portal class extends TopDocumentImpl class indirectly, all, the methods to do
operations on the portal page like findElement, findAutoComplete etc. are readily available.
One can see all the available methods by pressing CTRL+space keys on keyboard for eclipse IDE.

public Forecast cpenForecast() {
PegaklebElement element = findElement(FORECAST);

i @ findAutoComplete(By by) : AutoComplete - PegaWebDrin & v);
L @ findElement(By by): PegaWebElement - PegaWebDriverlr

} @ findElements(By by] : List<WebElement> - Pega .":Eth'i-'El}

@ findFrame(5tring frameld) : Frame - PegaWebDriverlmpl

@ find5SelectBox(By by) : DropDown - PegaWebDriverlmpl

@ findWizard(5tring arg0) : Wizard - PegaWebDriverlmpl

> generateDOMPath(String argl, By argl) : String - Pegalle

@ get(String url) : void - PegaWebDriverlmpl

@ gethctiveFrameld() : String - PegaWebDriverlmpl

@ gethctiveFrameld(boclean argl) : String - Pega\WebDriver

@ getClass(): Class<?> - Object v
£ >
Press 'Ctrl+=5pace’ to show Template Proposals

Forecast.java:

Every page for Pega application will either be present on top page or inside a frame. If the page is
available on the top page, then page class should extend from TopDocumentImpl and if the page is
available inside a frame then page should extend from FrameImpl from the base framework.

A Forecast.java is class written to keep the collection of all properties and behaviours for sample
Forecast scenario used in this sample application. As seen in the below snippet, the Forecast page is
under Frame ‘PegaGadgetlIfr’ so Forecast class should extend FrameImpl to get all the
capabilities of FramImpl class. Framelmpl class from the framework also has methods like
findElement, findAutocomplete, findSelectBox etc, similar to TopDocumentimpl, to find different
elements on the page and perform actions on them.

1 Apps @] Automation Analys = Alcasouza] LF LUS kxecution Jenk L1 Analysis logl - MIU L] Agilestudio space “p LUs Ingger (5 uml diagrams - Goo What

PEGA Sales Automation

+ Create Forecast

2 Dashboard

Details Close plans

My work
All Individual | Busi
Spaces
Territory Override level
[J Pulse North East , North East

isy Organizations

.1 Households WLVEEL LN Weighted

5 Accounts

Forecast category o1 02

Pertor e orecast page is under frame 'PegaGadget1Hr'
=2 7 L — i detected. See https://ww . Fallback font will be used while loading: https://lab8:
Code snippet for Forecast.java is as below:

public class Forecast extends FrameImpl page extends Frame|mp| class
public Forecas ring tramelD, TestEnvironment testEnv) {

super(frameID, testEnv);

public static final By CLOSE_PLANS = By.xpath("//h3[text()="Clese plans']");

JEE

Toggle to ClosePlans tab from forecast tab, within the same page/frame

puE]ic void switchToClosePlans() {))
findElement (CLOSE_PLANS).click(); This method clicks on Close
I plans tab on the Forecast
H page
Note:

For Framelmpl Class we have the below contructors available, which should be used based the way
available for us to identify a frame.

When a unique framelD is available on the iframe tag, the preference should always go to the below
constructor

FrameImpl(String frameID, TestEnvironment testEnv)
The first argument, frameID, is the id for the Iframe tag for the frame
which user is referring to and the second argument is the TestEnvironment object.

When there is no unique id available on an iframe tag, a css or xpath should be constructed for the
iframe tag, find the iframe element on the page with findElement method and pass that
PegaWebElement to this below constructor.

FrameImpl(PegaWebElement element)

The argument, element, is a WebElement which is identified with a locator
for the Iframe tag for this Frame which user is referring to.

Both these above constructors are useful while dealing with a single Iframe. If there are inner
frames, the above two constructors are not the right way creating the page objects. To create a page
object for inner frames, use findFrame method from the outer frame page object, which returns a
Frame object. Pass this frame object to the below constructor for creating a page object class for
inner frames

FrameImpl(Frame frame)

The argument, frame, is the inner frame object returned by findFrame method
of the outer frame. The inner frame using findFrame method can also be found
either using the frame id or by finding the inner iframe as a pegawebelement.

Below is an example for creating a page object for Inner frames:

public class PredictionStudio extends FrameImpl{

public PredictionStudio(String framelID, TestEnvironment testEnv) {
super(framelD, testEnv);

}

@Override
public Predictions getPredictions() {
findElement (PREDICTIONS_TAB).click();
Frame innerFrame = findFrame(getActiveFrameIdWithInThisFrame());
Predictions predictions = new Predictions(innerFrame);
return predictions;

Note: For The tests shipped with the previous versions of the starter kit, there could be differences
with the way Frame page object are defined.

A snipped from earlier version of framework (Selenium Starter Kit 2.0)

public PegaClosePlans(WebElement elmt, String elmtId) {
super(elmt, elmtId);

}

which is now changed to (Selenium Starter Kit 2.1)

public PegaClosePlans(String frameld, TestEnvironment testEnv) {
super(frameld, testEnv);

}

Feature files:

In this sample project, we employ Behavior-Driven Development (BDD) approach. BDD is a
collaborative approach to software design and development. Discussing BDD is beyond the scope of
this documentation but there are a lot of resources online for further reading. BDD separates the
concerns of defining business outcomes/acceptance criterion from implementation. This separation
of concern allows for Business and IT teams to collaborate efficiently.

In BDD style, Feature files, written in business language, are used to define executable specifications.
Typically, Gherkin syntax is used to structure and define a feature. Step Definitions provide the
implementation to corresponding to steps in a Feature file. In this example, step definitions are
implemented in Java. In this sample project, we use Cucumber BDD framework. For best practices on
writing Gherkin, see here

All the feature files are organized under src/test/resources/features package.

v =% pega-sample-testframework
& src/main/java

2% SrC/iesty resources
~w B features
@ forecastTest.feature Feature fllE dare

located here

@ sarnpleTest.feature
Ly spacesTest.feature

B\ Maven Dependencies

B\ JRE System Library [jdk1.2.0_202]
= binaries

= data

= lik

= logs

= SIC

= target

¥| extent-configxml

M| pom.sml

Forecast.feature:

Forecast.feature is sample feature file for the current test scenario, where user should open the
Forecast page and then click on the Close plans tab and asserts a link in the close plan tab to make
sure the tab is opened or not

It is always recommended to create separate packages for each scenario. In this sample project, the
all the feature files are available at features package.

User can have duplicate gherkin lines in the same or different feature files.

https://docs.cucumber.io/cucumber/
https://automationpanda.com/2017/01/30/bdd-101-writing-good-gherkin/

v Eﬁ‘; pega-sample-testframewark 1= Feature: Sample feature to open forecast
2
3 #author : ABCD

4 @TC-82 (@smoke

v H features S Scenario: Sample Scenario to open forecast

7] forecastTest feature $ Given A User logs in with "tmason” and "install”

([src/main/java
v [src/test/resources

[,2) sampleTest.feature 7 When user opens the forecast workobjects page
B sroftest/java 8 And switches to close plans tab
;, Maven Dependencies a Then close plans view should be available
° . . . 18
=\ JRE System Library [jdk1.2.0_151] 11 O

Gherkin lines written in cucumber feature
files

Step Definitions:

Each step written in Feature file should be associated with a step definition. The step definition is
the has the java logic to perform the operations mentioned in the Gherkin lines. All the step
definition files are recommended to keep under src/test/java/stepdefs package.

User must have @ScenarioScoped annotation before step definition class. This annotation comes
from cucumber-guice dependency as mentioned in below description. The usage of
@ScenarioScoped annotation allows an object to be used in different step definitions present in
the same class.

v 53 pega-sample-testframework
% =rc/main/java
[src/test/resources
v B srcftest/java
w 1 (default package)
[7] RunCucumberTest java
H com.pegatest.pega sample testframework
v i stepdefs
41 ForecastStepDefs,java

_m SalesManagerStepDefs.java

|%| legback-testaml
=\ Maven Dependencies
B, JRE System Library [jdk1.2.0_151]

= binaries oo

(= Data All the step efinitions are
= lib available under stepdefs
o sIC

[= target package

|¥| extent-configaml

g pom.xml

SalesManagerStepDefs.java :

This class contains the step definitions used by different test cases related to Sales manager portal.

[@ScenarioScoped

public class SalesManagerStepDefs {
TestEnvironment testEnv;
com.pega.test.pega_sample_testframework.MyAppBrowser browser;
private PegaWebDriver pegaDriver;
private SalesManagerPortal salesManagerPortal;
private Forecast forecast;

@ | @Inject MyAppTestEnvironment
public SalesManagerstepDefs(MyAppTestEnvironment testEnv) { . y Ipp -
this.testEnv = testEnv; |S|ﬂject9d to the

pegaDriver = testEnv.getPegaDriver(); .
browser = (MyAppBrowser) testEnv.getBrowser(); COF?SFFPCtOF of every step
salesManagerPortal = browser.getPortal(SalesManagerPortal.class); definition class

}

= @Hhen("”user opens the forecast workobjects page$")

public void user_opens_the_forecast_workobjects_page(){ : Step definition for the gherkin line

forecast = salesManagerPortal.openForecast(); . :
MyAppObjectsBean.setForecast(forecast); in ForecastTest.feature

The Object of class MyAppTestEnvironment is injected to the constructor of every step definition
with the help of @inject annotation. This annotation comes from the Google Guice dependency
specified in pom.xml of the user’s test framework.

<dependency>

<groupId>com.google.inject</groupId>
<artifactId>guice</artifactId>
<version>3.0</version>

</dependency>

<dependency>
<groupId>info.cukes</groupId>
<artifactId>cucumber-guice</artifactId>
<version>1.2.4</version>

</dependency>

The object of MyAppTestEnvironment class can be used to get the handles for, MyAppBrowser,
different portals etc. in the injected class.

etc. to carry out operations on these pages
ForecastStepDefs.java :

This class contains the step definitions which are used by different test cases related to Forecast
page. Like any other stepdef class, this class also has a constructor with MyAppTestEnvironment
injected to it, followed by various step definition methods.

v [pega-sample-testframework
. src/mainfjava
~ (@ src/test/resources
~ [features

1o Festure: Sample feature to open forecast

#author : ABCD
@TC-82 @smoke
= Scena sample Scemario to open forecast

LT

) forecastTest feature [y — e Given A User logs in with "tmason” and "install”

[77) sampleTest feature

<

8 src/test/java
~ f (default package)

[4) RunCucumberTest java
com.pega.test.pega_ssmple testframewark

v [stepdefs

A1) ForecastStepDefs java

1) SalesManagerStepDefsjava

A1) TestStepDefs java
[% logback-testxml

=\, Maven Dependencies
=i JRE System Library [jdlk
(= binaries
(= Data
= lib
i sre
(= target
|¥] extent-config.xml
| pomaxml

Spaces Test

stepdefinition

Case

When user opens the forecast workebjects page
nd switches to close plans tab
Then close plans view should be available

w oo~

=

orecastStepDefsjava 51
+ §1dg[]

package stepdefs;
import org.openga.selenium.By;[]

1
34
35 @ScenarioScoped

36 public class ForecastStepDefs {
3

3

3

TestEnvironment testEnv;

8 com.pega.test.pega_sample_testframework.MyAppBrowser browser;
W39 private PegaliebDriver pegaDriver;

48 private Forecast forecast; definiti
» stepdefinition
42

435 @Inject

public ForecastStepDefs(MyAppTestEnvironment testEnv) {
this.testEnv = testEnv;
pegaDriver = testEnv.getPegaDriver();
browser = (MyAppBrowser) testEnv.getBrowser();
forecast = MyAppObjectsBean.getForecast();

}
ihen(""switches to close plans tab$")
53 public void switches_to_close_plans_tab(){
54 forecast.switchToClasePlans();
55 }
56
575 @Then("~close plans view should be available")
8 public void close_plans_view_should_be_available(){
59 Assert.assertTrue(forecast.verifyElement(By.xpath("/ /body[contains(text(), 'Close Plans’)]")));
68 }
61 }

Let’s navigate through another testcase related to Spaces from SalesManagerPortalFirst, let’s take a

look at the page objects:

Actual flow in portal:

PEGA Sales Automa Q 9

72 Dashboard
My spaces (3) All spaces
Mo Clicking on Spaces link

Siees d opens Spaces Landing Searc Q

page in a Frame

Pulse
@ Terry Mason @ TerryMason

Organizations

Households

E5 Accounts MySpace dsadsfdsafas

1 member

Contacts

Leads

Opportunities

% Forecast
Sales Best Practices
il Reports
Following >
Recents seeall v

SalesManagerPortal class:

) spacesTest feature +J] SpacesStepDefs.java 1] Space_PegaSocialGro... [J] Spacesjava [J] Space_PegaSocialGro... [J] SalesManagerPortal j...
1 package com.pega.crm.portal;
2
3% import org.openga.selenium.By;
-

11 public class SalesManagerPortal extends PortalImpl{

13 public static final By FORECAST = By.xpath("//span[text()='Forecast']");
public static final By SPACES = By.xpath("//span[text()='Spaces']");

@ n

S public SalesManagerPortal(TestEnvironment testEnv) {
super(testEnv);
}

= public Forecast openForecast() {
PegaWebElement element = findElement(FORECAST);
element.click();
return new Forecast(getActiveFrameId(true), testEnv);

}

[i W g R g]

public Spaces openSpaces() m
PegaWebElement element =
element.click();
return new Spaces(getActiveFrameId(true), testEnv); manager DOf'ta|

FindElement (SPACES) 3 Opening the spaces link in the sales

Spaces class:

An instance of this class is returned by openSpaces method in SalesManagerPortal class

8 spacesTest.feature] SpacesStepDefs.java 4] Space_PegaSocialGro... [3) Spacesjava &3 | [J] Space PegaSocialGro... [J] SalesManagerPortal j...

backage com.pega.crm.workobjects;

2
3

@ import org.openqga.selenium.By;[]

public class Spaces extends FrameImpl{
public Spaces(String frameID, TestEnvironment testEnv) {
super(framelD, testEnv);
}

public static final By CREATE_SPACE = By.xpath(XPathUtil.getDataTestIDXpath("20138321021414844515551"));

FET

=l
R e R T =]

19 * Create a new space/pega social group Page object pattern for

219 public Space_PegaSocialGr‘ou? createSpace() { creating a new space from

2 PegaklebElement elem = findElement(CREATE SPACE); .

2 elem.click(); the list of spaces page, as a

;j , return new Space_PegaSocialGroup(getActiveFrameld(true),testEnv); new page gets opened, it

26 returns

27 B .
Space_PegaSocialGroup
Object

This createSpace method is an example showcasing how a frame page can be opened from
another frame. The way we create page object doesn’t change as we automatically get the
activeframeid even if the page is opened from an existing frame page, not just from the top
document

Actual flow in portal:

PEGA Sales Automation Search... Q o ®

+ Create Spaces Create space

@) Dashboard
My spaces (3) All spaces

PEGA Sales Automation

— Create a new space

€2 Dashboard

Name x Clicking on Create Space from Spaces

Enter space name page opens create a new space page
in a new frame. SO the

F MyWork

28 Spaces

Description corresponding page object method
3 pulse for Create Space returns a new Page
s Organizations Space type
Public
¢} Households Anyone can see and join the space, and view content
5 Accounts Featured image After entering the name and
clicking Done, the new space
S Contacts I page is opened in the same
00 frame, so the corresponding
7 Leads PageObject method should

o Update space image (@ return void
Y Opportunities

% Forecast

PEGA Sales Automation

+ Create TestSpace1234 \ New Space page that got

created in the same frame
& Dashboard after clicking Done. We are
verifying the header to make

Search... Q 9

Activity Board Subspaces Tasks

My Work Pulse sure the space got created = C a
38 Spaces & Post - ;“'u Terry Mason Public
Pulse &, @ D
{4 Organizations I. [ﬁ @
@ Households TestSpace1234
= Accounts Notification preferences @
2= Contacts Members (1) o]
7 Leads f,;‘ Terry Mason Owner
& Sales Rep
Opportunities
Rarant rantant (M +

Space_PegaSocialGroup class:

This class’s object was returned by createSpace method in Spaces class. Even if we have opened
an existing space instead of creating new one, then also this object should be returned as the same
page gets opened in that case too.

@ spacesTest.feature 1] SpacesStepDefs java 1J] Space_PegaSacialGro... |4] Spacesjava 1¥) Space_PegaSocialGro... 33 | [J] SalesManagerPortal)... =

rpackage com. pega. crm.workobjects;

@ import org.openga.selenium.By;[]
public class i N extends FrameImpl{

= public Space_PegaSocialGroup(String frameID, TestEnvironment testEnv) {
super(frameID, testEnv);

}

[T

public static final By NAME = By.xpath(XPathUtil.getDotaTestIDXpath("201804048414540877323962"));
public static final By DESCRIPTION = By.xpath(XPathUtil.getDataTestIDXpath("28188321013789817931436"));
public static final By DONE = By.xpath("//button[text()="Dene']");

Wh P @00 ;U bW E S0 o

* Toggle to ClosePlans tab from forecast tab, within the same page/frame
By

Page Object method which
inputs the new space details and
creates it

= public void createSpace(String name) {
findElement (NAME).sendKeys(name) ;
findElement (DESCRIPTION) . sendKeys(name);
findelement (PONVE).click();

5

B

7 b

a= public boolean verifySpaceHeader(String spaceName)

8 {

1 return verifyElement(By.xpath("//*[contains(@class, "header-title') and tEXt()='"+5paCENETE+"']")),‘
2 }

3

Verification method to check if the
space was successfully created

LUk R ORI RI ORI ORI ORI RO BRI R

i
-

Now let’s define our test in a Cucumber gherkin file

@ spacesTestfe.. i |J| SpacesStepDef.. 1] Space_PegaSoc... [J] Spaces.java 1] Space P
1= [Feature: Sample Feature to test cucumber
2
3 #author @ ABCD
4 @ETC-82 @smoke
5= Scenaric: Sample Scenarioc to test cucumber
6 Given A User logs in with "tmason" and “"install”
7 When user opens the spaces workobjects page
a8 And user navigates to new space wizard
9 And creates a new space with name "MySpace”
1@ Then the new space should be successfully created

This is the actual test we want to create using simple
english language using gherkin lines. Once we created
the test, we have to define the conversions to these

english lines which are called stepdefinitions, defined
in java class as annotated methods

Now it’s time for creating the stepdefinitions:

SalesManagerStepDefs class:

@ spacesTest.fe... _m SpacesStepDef... _@ Space_PegaSoc... Spaces.java m Space_PegaSoc... [3] SalesManagerP... m lesManagerS.. 22 = E

2® = $Ids[]
16
17 package stepdefs;
18
19% import com.google.inject.Inject;[]
31
32 (@5cenarioScoped
33 public class SalesManagerStepDefs {
34 TestEnvironment testEnv;
35 com.pega.test.pega_sample_testframework.MyAppBrowser browser;
136 private PegaWebDriver pegaDriver;
37 private SalesManagerPortal salesManagerPortal;
38
39
4= @Inject
41 public SalesManagerStepDefs(MyAppTestEnvironment testEnv) {
42 this.testEnv = testEnv;
43 pegaDriver = testEnv.getPegaDriver();

browser = (MyAppBrowser) testEnv.getBrowser();
salesManagerPortal = browser.getPortal(SalesManagerPortal.class);

}
@hen("*user opens the forecast workcbjects page3”) StepDefinition for opening the spaces page,
public void user. opens. the forecast workobjects page(){ H ;

Forecast forecast = salesManagerPortal.openForecast(); using the page ObJECt we created for

MyAppObjectsBean.setforecast(forecast); //Sets the forecast obje SalesManagerPor’(al.

}
@wWhen("~user opens the spaces workobjects page$")
public void X Y Onlce we open the spaces page and gelt.a page
Spaces spaces = salesManagerPortal.openSpaces(); Ob_jeCt for the same, we need to store it in
AppObjectsB .sets) B

PO st o b Rat Pl | Obijects Bean to retrieve it later in other
stepdefinition classes. We shall discuss this later
in ObjectsBean section

< >

SpacesStepDefs class:

@spaces'l'est.fe... _m SpacesStepDef... B _m Space_PegaSoc... [] Spacesjava m Space_PegaSoc... [7] SalesManagerP... _m SalesManagers. =
2@| * 31d3[]
16
17 package stepdefs;
18
19% import com.google.inject.Inject;[]
EL
31 (@ScenarioScoped
32 public class SpacesStepDefs {
33 TestEnvironment testEnwv;
34 com.pega.test.pega_sample_ testframework.MyAppBrowser browser;
an35 private PegaWebDriver pegaDriver;
36 private Spaces spaces;
37
38
398 @Inject
48 public SpacesStepDefs(MyAppTestEnvironment testénv) {
41 this.testEnv = testEnv;
42 pegaDriver = testEnv.getPegaDriver();
43 browser = (MyAppBrowser) testEnv.getBrowser();
44 Define your stepdefinition method
45 f -
15 } using the When annotation above
47 the method
452 [fwWhen("~user navigates to new space wizard$")
49 public void user, creates a.new space with name(){
58 spaces = MyAppObjectsBean.getSpaces(); First retrieve the spaces ObjECt
51 Space_PegaSccialGroup space PegaSocialGroup = spaces.createSpace();
52 MyAppObjectsBean.setSpace_PegaSocialGroup(space_PegaSocialGroup); created and stored in Ob_jeCtSBean
53 .
51 3 } class, then use the page objects
55 methods from the spaces class for
carrying out the actions on the
" i

Space_PegaSocialGroupStepDefs class:

[w) pega-sam ple-testfram ework/pom.xml @ forecastTest.feature [1) MyAppBrowserjava 1] Space_PegaSocialGroup java [¥] Spacesjava 1) Space_PegaSocialGroupStepDefsjar
2@| * 21d3[]

package stepdefs;

24198 impart org.openaa. selenium.By;l] While we create a new space on application, we
34 might end up running this test multiple times on
35 (@ScenarioScoped . .

35 public class Space_PegaSocialGroupStepDefs { sample application and hence, when we run for the
7 TestEnvironment testEnv; second time a new space with same name should
38 com.pega.test.pega_sample_testframework.MyAppBrowser browser; . R K

Q39 private PegaWebDriver pegaDriver; not be created. To avoid creating space with same
49 private Space_PegaSocialGroup space PegaSocialfroup; .

a private String name; name, we can use putTimeStampedValue method
42 from ObjectsBean, which appends a random time
43 . “

a4 @Inject stamp and stores that value for this session of test
45 public Space_PegaSocialGroupStepDefs(MyAppTestEnvironment testEnv) { to be able to retrieve in other steps by using

B this.testEnv = testEnv; R

47 pegabriver = testEnv.getPegabriver(); getTimeStampedValue method from the same

43 b = (MyAppB testEnv.getB H .

e rowser = (MyAppBrowser) testEnv.getBrowser() ObjectsBean class

58

s}

52

53 @when("~creates a new space with name \"([*\"]*)\"$")

54 public void N, Wi (String name)

55 this.name = MyAppObjectsBean.putTimeStampedvalue(name) @@ putTimeStampedvalue method appends a random time stamp value to the end of given :
56 space_PegaSocialGroup = MyAppObjectsBean.getSpace_PegaSocialGroup();

57 space_PegaSocialGroup.createSpace(this.name);

S8 }

59

[@Then("~the new space should be successfully created$”)

public void th il
Assert.assertTrue(space_PegaSocialGroup.verifySpaceHeader(name));

}

Use of ObjectsBean class :

In this sample project a java bean class is created with a getter and a setter methods which is used to
store and retrieve the objects created for different pageobjects across multiple cucumber
stepdefinition files . This class is MyAppObjectsBean.

The user creates the object of Forecast page in SalesManagerStepDefs.java. However, the same
forecast object should be used throughout the test case in different step definitions which can be
scattered in various classes. Thus, to transfer a page object from one class to another class we use
JavaBean class.

This is needed because as and when a gherkin file is being executed, cucumber-jvm tries to find a
matching step definition in java classes, then the cucumber guice will create an object using the
constructor which has @Inject annotation on top of it automatically. An explicit object creation
step for a step definition class is not added, hence will not have an option to transfer a state of a
page object to different step definition classes. So, to store these page objects whenever they are
created, developer should push them to static variables in ObjectsBean class via the setter
methodsand reuse them in different step definition classes via the getter methods.

v [pega-sample-testframework 1 package com.pega.test.pega_sample_testframework;
v (# src/main/java 2
~ i com.pega.crm.portal
5> [SalesManagerPortal java
~ f} com.pega.crm.warkobjects
> [J] Forecastjava
([src/test/resources
v G features
L,__J forecastTest.feature
() sampleTest feature
B sroftest/java
~ B} (default package)
> [J] RunCucumberTest java
~ H} com.pega.test.pega_sample Restframework
> [J] MyAppBrowserjava
> [J] MyAppObjectsBean.java
> [J] MyAppTestEnvironment,java

3 import com.pega.crm.workebjects.Forecast;
F3
5 public class DR TISIaTrre {

private static Forecast forecast;

]

java bean clas

<

9= public static Forecast getForecast() {
18 return forecast;

<

13 public static void setForecast(Forecast forecast) {
14 MyAppObjectsBean. forecast= forecast;
1

16
17)

getters and setters for forcast object

~ [stepdefs
>] ForecastStepDefs.java
> [J] SalesManagerStepDefs.java I ForecastStepDefsjava 53
> 4] TestStepDefs,java 28+ s1as]
%] logback-testxml 15
» =\ Maven Dependencies 17 package stepdefs;
> = JRE System Library [jdk1.8.0_151] 18
> B> binaries J410% import org.openga.selenium.By;[]
34
. bpata 35 (@5cenarioScoped
» [lib 36 public class ForecastStepDefs {
> e 37 TestEnvirenment testEnv; User gets the already created
5 [target com.pega.test.pega_sample_testframework.MyAppBrowser browser; .
[¥] extent-configxml private PegalebDriver pegaDriver; ObJECt of Forecast page from
b pomaml private Forecast forecast; the java Beans class
@Inject

public ForecastStepDefs(MyAppTestEnvironment testenv) {
this.testEnv = testEnv;
pegaDriver = testEnv.getPegabriver();
browser = AppBrowser) testinv. getBrowser();
orecast = MyAppObjectsBean.getForecast();

}

@hen("~switches to close plans tab3")
publi i i . . .
forecast.switchToClosePlans(); Same forecast object is used in every

H stepdefinition files

The first step definition class where an object is created, if user wants to use the same objectin a
different step definition class, then user must use one of the setter methods to store the data in the
MyAppObjectsBean class.

o% import org.openqga.selenium.Bv;[]

a4

5 (@ScenarioScoped

& public class SalesManagerStepDefs {

TestEnvironment testEnwv;
com.pega.test.pega_sample_testframework.MyAppBrowser browser;
private PegaWebDriver pegaDriver;

private SalesManagerPortal salesManagerPortal;

private Forecast forecast;

@Inject
public SalesManagerStepDefs(MyAppTestEnvironment testEnv) {
this.testEnv = testEnv;
pegabriver = testEnv.getPegaDriver();
browser = (MyAppBrowser) testEnv.getBrowser();
salesManagerPortal = browser.getPortal(SalesManagerPortal.class);

}

bﬁhen(““user opens the forecast workobjects page$™)
public void user_opens_the_forecast _workobjects_page(){

MyAppObjectsBean.setForecast(forecast); Usere stores the forecast ObJECt into
} MyAppObjectsBean class

[F R R RV RS PR RS T T . R I S ET R K J
[

ForecastStepDefs.java i3

2® * Id[]

&

7 package stepdefs;

8

o% import org.openqga.selenium.By;[]
4

5 ([@5cenarioScoped

& public class ForecastStepDefs {

TestEnviraonment testEnwv;
com.pega.test.pega_sample_testframework.MyAppBrowser browser;
private PegalWebDriver pegaDriver;

private Forecast forecast;

@Inject

public ForecastStepDefs(MyAppTestEnvironment testEnv) {
this.testEnv = testEnv;

pegaDriver = testEnv.getPegaDriver();

User retrieves the object of
Forecast page from
MyAppObjectsBean class in a
differnt step difinition file

forecast = MyAppObjectsBean.getForecast();

Lo N TN I SRRV [SR T S S I Ve I |

RunCucumberTest.java:

This is the class from where cucumber starts executing the tests. This class must have a
@CucumberOptions annotation. This annotation tells Cucumber a lot of things like where to look
for feature files, what reporting system to use and some other things also. But for the sake of this
project, it’s configured for dryRun and monochrome. The test runner class also acts as an interlink
between feature files and step definition classes.

User must extend the runner class from AbstractTestNGCucumberTests class.

v _'.'_—‘f- pega-sample-testframework
~ i# sro/main/java
v [H com.pega.crm
v i portal
[7] SalesManagerPortaljava
~ [workobjects
[J] Forecastjava
[1] Space_PegaSccialGroup.java
[7] Spacesjava
w [sro/ftest/resources
v H features
@ forecastTest.feature
@ sampleTest.feature
@ spaces.feature
~ i src/test/java
w Y (default package)
[7] RunCucumberTest java _
v [com.pega.test.pega_sample_testframewaork
[J] MyAppBrowser.java
m MyAppObjectsBean.java
[7] MyAppTestEnvironment.java
v iH stepdefs
_m ForecastStepDefs.java
,'T| SalesManagerStepDefs,java
4] Space_PegaSocialGroupStepDefs.java
_m SpacesStepDefs,java
_m TestStepDefs.java
|¥] logback-test.aml

Cucumber Runner Class

B\ Maven Dependencies

= binaries
w [data
|Z| global-settings.properties
|Z| users.properties
v [= lib

55| pega-base-ui-testframework-2.0.0,jar

= logs

=5 srC

[= target

|X| extent-configaml

[m] pormaml

Running the Tests

Once you have your new tests developed, running them is follows the same steps as running
the out of the box tests. One can check the Selenium Starter Kit - Running Tests guide to run
the tests

Binaries and lib folders
Folder binaries:

By default, we attempt to download an appropriate chrome driver automatically through our
custom utility. If it fails, copy the driver manually to binaries folder. User can also place the binaries
for other browsers in the same folder.

v E:‘Jf pega-sample-testframework
src/main/java
| croftest/resources
i sroftest/java
B\ Maven Dependencies
B JRE Systemn Library [jdk1.2.0_151]
w [binaries
[mZ] chromedriver.exe
|=| do_not_checkin_chromedchromedriver.properties
D do_not_checkin_chromedriverversion.td
= Data
= lib
o SrC
(= target
|X| extent-configaml
g pom.xml

lib Folder:

The lib folder contains the library pega-base-ui-testframework-2.0.0.jar,which is the base M
framework.

Results & Reporting
Extent-config file:

By using this external XML file (extent-config.xml), we could change the details such as Report
Theme (either standard or dark), Report Title, Document Title etc.,

This is present in our sample project at the location as seen in below snippet:

[Project Explorer 53 = \':3| e = =8
v 25‘3 pega-sample-testframework
> (& src/main/java
v B src/test/java
v 1 (default package)
> [J] RunCukesTest.java
>t com.pega.test.pega_sample_testframework
> HS features
> 4B stepdefs
|X] logback-test.xml
> =, Maven Dependencies
» = JRE System Library [jdk1.8.0_111]
» (= binaries

(= Data

extent-config.xml

extentReport.html:

extentReport.html is an html report generated by executing test case in a project. For generation of
extentReport.html you need to have two dependencies to be included in pom.xml. Those are as

shown in below snippet:
<dependency>
<groupId>com.vimalselvam</groupId> a
<artifactId>cucumber-extentsreport</artifactId> dependencies for

<version>3.1.1</version> extentReport
</dependency>

<dependency>
<groupId>com.aventstack</groupId>
<artifactId>extentreports</artifactId>
<version>3.1.1</version>

</dependencv>

The next step is to add plugin for extent report in RunCucumberTest.java. The code snippet for same

will look as in below:
[¥] RunCucumberTestjava 23

® import cucumber.api.CucumberOptions;[]

R b

o e

@Cucumberoptions(plugin = {"com.vimalselvam.cucumber.listener.ExtentCucumberFormatter:target/extentReport.html"})
public class RunCucumberTest extends AbstractTestNGCucumberTests{

~

8

9 String COPYRIGHT = "Copyright (c) 2818 Pegasystems Inc.”;

1@ String WERSION = "$Id: RunCukesTest.java 121819 2018-81-26 87:29:517 SachinVellanki §";
12 }

3

Once we execute test case, result will be available in target folder with html file extentReport.html.
Passed Test Report

Below is a sample report for passed test cases

Feb 28, 2019 03:04:15 PM

f'.![Filte¥as per Categ . s Scenarios » e Steps . s

o Filter as per status 0
&

1feat 4 astey

4, 0 cthers ostey

ofeat led, 0 others 0

Features ~ Sample feature to open forecast

Sample feature to open forecast
Feb 28, 2019 03:04:15 P
Scenario Sample Scenario to open forecast Oh 1m 135-582ms

Given Given A User logs in with "salesmanageruser” and "password"
passed

When When user opens the forecast workobjects page

passed

And And switches to close plans tab
passed

Then Then clase plans view should be available

passed

User can filter reports by status (passed, failed, skipped) or by category(by tags) as shown above.

Dashboard view for the report will be as shown in below snippet:

ExtentReports
5 Dashboard

Features

1 feature(s) passed
0 feature(s) failed, 0 others

Features
Dashboard view

1
Name Passed
@smokel 1
@TC-02 1

Failed Test Report

file://C:f GitRepoSprint6/prpc-platformitest/cuc

b

Scenarios

Failed

0

g html2!

B Pass Scenarios | Pass
1scenario(s] passed
0scenario(s) failed, 0 others
Steps Start
1 4 Feb 28, 2019 03:17:53 PM

Others

L]

Extent report for the failed test case will look as below:

Feb 28,2019 03;

Steps 8 Pass
4step(s) passed
0step(s) failed, 0 others
End Time Taken
Feb 28,2019 03:18:32 PM 38,976ms

Extent ExtentReports
5 Status A Category @
Features » Fail Scenarios Steps B Pacsc
(=3 | Fail
™ skip
Exceptions for Fai
—
test case
0 feature(s) passed 0 scenario(s) passed 1 step(s) passed
1 feature(s) failed, 0 others 1scenariols) failed, 0 others 1 step(s] failed, 2 others
@
Features ~ Sample feature to open forecast
Sample feature to open forecast
Feb 28,2019 03:21:30 PM Fail
Scenario Sample Scenario to open forecast 0h Om 40s+870ms
Given Given A User logs in with "salesmanageruser” and "password"
passed
When When user opens the forecast workobjects page
java.lang.NullPointerException
at com.pega.explorer.CaseWorkerFixture.user_opens_the_forecast_workobjects_page
(CaseliorkerFixture. java:496)
at #.When user opens the forecast workobjects page
(EndUserComponents/EndUserbiorkPortals/gherkin/EndUsertiorkPortals. feature: 583)
And And switches to close plans tab
kipped
ERARE Screenshot Captured for
failed step can be seen by
Then Then close plans view should be available - N ™m
clicking on icon
skipped
v
=]
< >

Screenshot captured at failed step can be seen by clicking icon as shown in above snippet.

For failed test cases extent report will give Exceptions tab to make debugging easy. Exceptions tab
will look like as shown in snippet below:

& & ‘ﬁlE:/4’4’(:_r'G|tREpuSpnntQE_r’prp(rp\atfnrm_r’testa’(u(umharrwehdnvErrTEsts_r’targEta’ExtEntREpnrt‘htmI#! v‘ > I
Extent ExtentReports Feb 28,2019 03:21:30 PM v3.L1
5 Search Q
Exceptions ~ Java.lang.NullPointerException
[=3
java.lang.NullPointerException

Status

Timestamp TestName
E
$ Exceptions tab Sava.lang.NullPointerException

at com.pega.explorer.CasehiorkerFixture.user o

& Sample feature to open forecast.Sample Scena pens_the_forecast_workobjects_page(CaseWorkerFixture.
Feb28,201903:22:11 PM rio to open foreca: n user opens the forec java:496)
ast workobjects page at sk .When user opens the forecast workobject

s page(EndUserComponents/EndUseriiorkPortals/gherkin/E
ndUserilorkPortals.feature:583)

Console for failed step in detail

Control the Logging mechanism

Logback-test.xml:

With logback-test.xml, user is provided with logging utility. logback will try to configure itself using
the file logback-test.xml. logback is nothing but a logging framework. We have logack-test.xml file in
folder structure as shown in below snippet:

[Project Explorer 53 =R S ~ = 9
~ N pega-sample-testframework
& srcfmaindjava
~ 7 srcftestijawva
H#3 (default package)
#F com.pega.test.pega_sample_testframework
H2 features

I 3] logback-test.xml ﬁ>loghack-test.xml file

=i JRE Systern Librarny [idk1.2.0_171]
= binaries

(= Data

&= lib

== logs

B= sre

(= target

3] extent-configsaml

[l pormasanl

By default the logging level is set to info mode. To turn it to a different mode, open the logback-test
xml file and change the root level to one of debug, warn or error modes

|%] logback-testaml &3

o8 <appender name="RootSiftdppender” class="ch.qgos. logbhack.classic.sift.siftingdppender”s
18s <discriminator:

11 <Key>testname</Key>

12 <DefaultValuerapplication</DefaultValue:

13 </discriminators

las <sifte

158 <appender name="FILE-${testname}"

class="ch.gos. Logback. core. rolling.RollingFiledppender™:
<Filerlogs/3{testname}.log</Filex
<rollingPolicy
class="ch. gos. logback. core. rolling. FixediWindowRol lingPolicy™:
<FileNamePattern:${testname}.¥%i. log</FileNamePattern:>
<MinIndex>1</MinIndex:
<MaxIndex>188</MaxIndex:
</rollingPolicy>
<triggeringPolicy
class="ch. gos. logback. core.rolling. 5izeBasedTriggeringPolicy™>
<MaxFileSize»SMB</MaxFileSizer
<ftriggeringPolicy>
<layout class="ch.gos. logback.classic. PatternLayout™>
<Pattern>¥d{I508681} ¥-S5level BC{1l} [¥M:%L] [Xthread] - Fmsg¥n</Pattern:
<flayout>
</appenderz
</sift>
</appenderz
<root 1EVE1="infbr3
<appender-ref ref="RootSiftAppender” />
<appender-ref ref="STDOUT" />
</root>

39 </configuration:

Generate a video for a test

For recording video, set property ‘enable.video.recording’ from global-settings.properties to
be true.

11@n.language=EN

chrome. extension.paths= enable.video.recording

should be set 'true' for video

dn.bundle.pa occalization/TextToTrans:
launch.broswer.with.addOns=Talse recording
firefox.addOns.paths=

Video file for the executed test case will be available under target folder with that tag name of
executed test case. To record a video, user must leave the screen as is and let the test run on the
foreground. If tests are running in parallel video recording is not supported.

% Project Explorer I3 =] <}==D| -

:;'3 pega-sample-testframewaork
> [# sre/mainfjava
5 4B src/test/java
» B Maven Dependencies
> B JRE System Library [jdk1.2.0_111]
5 [binaries
> = Data
> (= lib
v [logs
> b src
v (= target
» [cucumber-htmlireport
> (= generated-sources
5 [maven-archiver
» [maven-status

Y

Video file for Test case
. with tag TC-02
Json
extentReport.html
|£| pega-sample-testframework-1.0.0.jar
|X] extent-configxml
b pamaml

A @TC-02.avi

AP| Reference

TopDocument

As mentioned above in the document, this is a framework class which should be extended by a
pageobject class when a html page is not on any frame and directly resides in top level context. We
will see what methods and fields are available out of the box from this class. All the methods in
TopDocument class first switches the driver context to defaultcontent, i.e, switches out of all the

frames.

Fields
Name

testEnv

pegaDriver
actions

scriptExecutor

Methods
Name
findElement()

findElements()

findSelectBox()

findAutoComplete()

Type Description
TestEnvironment Fundamental class of the framework that
describes test environment.
You can retrieve any framework object using
testEnv
PegaWebDriver The wrapper created on top of Selenium’s
webdriver with some additional methods
Actions The Selenium’s driver actions class object
ScriptExecutor A base framework class which has methods to
execute javascript directly on the instance
opened in the browser
Arguments Description

Finds an Element on the page using Selenium’s
findElement method and wraps the element with
framework class PegaWebElement and hence returns a
PegaWebElement

Finds all the elements on the page with given location
strategy and returns a list of WebElements

This method should be used instead of findElement to find
a DropDown field on a page. It returns an object for
DropDown class. This class has wrapper methods for
handling dropdown related actions

Lead source /
Select... '
This method should be used instead of findElement to find
a AutoComplete field on a page. It returns an object for

AutoComplete class. This class has wrapper methods for
handling autocomplete related actions

Contact

4 —

Abel Amigon SampleCON-19
Kiley Amigon SampleCON-20
findFrame() Finds a frame on the top level document and switches to it.

It returns a Frame(Base Framework Class) Object

getActiveFramelD() Returns the current active frame on the application. If
using the overloaded method and provides argument as
true, then it switches to the active frame as well (Only for
frames with id as PegaGadget<x>Ifr)

handleWaits() Returns a WaitHandler class Object, which has methods
handling wait times and scrip to application
synchronization

verifyElementVisible() Booolean indicating visibility of an element on a page after
finding the element.

verifyElement() Verifies if an element is available on page and returns true
or false

Frame class:

As mentioned above in the document, this is a framework class which should be extended
by a pageobject class when a html page is on a Frame. Almost all the methods that we see in
the TopDocument class will be available in the Frame class, but the execution would happen
after switching to the frame context for every method.

PegaWebDriver class:

PegaWebDriver is a wrapper on top of Selenium WebDriver class. Apart from the WebDriver
API’s, we added few more methods to make automation on Pega applications easier. A lots
of methods that PegaWebDriver has like findElement, findSelectBox, verifyElement etc are
already called by the TopDocument and Frame classes, which a user should call from those
respective classes only. Apart from these methods following methods are available

Methods
Name Arguments
waitForDocStateReady()

switchToActiveFrame()

verifyAndWaitlfThrobberPresent()

PegaWebElement class:

Description
waits for the entire document
to load including background
page loading
switches to current active
frame on the application (Only
for frames with id as
PegaGadget<x>Ifr)
verifies if a throbber is present
and waits for the throbber to
disappear from the page.

PegaWebElement is a wrapper class around Selenium WebElement class, which is returned when
findElement method is used in TopDocument, Frame and PegaWebDriver classes. Apart from the
regular methods there are few methods added to this class which helps user to do actions on an
element like moving the virtual mouse to a particular element, draganddrop, rightclick etc.

Methods
Name Arguments
doubleClick()

rightClick()

Mouseover()

scrollintoView()

doClickWithMouse()

Description
Double clicks an element using
Selenium Actions class. It
wraps up all the code needed
to initialize the actions class

Right clicks an element using
Selenium Actions class. It
wraps up all the code needed
to initialize the actions class
Mouse hovers on the element
using the javascript mouseover
method

Scrolls an element in to view

with a javascript method

1) This method works only
when a browser is
launched in a full screen
mode and doesn’t work in
a Selenium Grid
environment.

2) This method has to be
used for local executions
only using the pixel
information for the
element

1)

2)

3)

1)

2)

3)

1)

2)

3)

It clicks on an element by
moving the virtual mouse
icon to the element.

This method works only
when a browser is
launched in a full screen
mode and doesn’t work in
a Selenium Grid
environment.

This method has to be
used for local executions
only using the pixel
information for the
element

It right clicks on an
element by moving the
virtual mouse icon to the
element.

This method works only
when a browser is
launched in a full screen
mode and doesn’t work in
a Selenium Grid
environment.

This method has to be
used for local executions
only using the pixel
information for the
element

It moves the virtual mouse
icon to the element.

This method works only
when a browser is
launched in a full screen
mode and doesn’t work in
a Selenium Grid
environment.

This method has to be
used for local executions
only using the pixel
information for the
element

It drags and drops the
current element to the
element provided in the
method arguments by
moving the virtual mouse
icon to the element.

DropDown class:

DropDown class provides methods to handle a dropdown element found on a webpage. Its object is
returned when we call findSelectBox method from the TopDocument or Frame class

Methods
Name Arguments Description

selectByVisibleText() Selects an option based on the
given text

selectByIndex() Selects an option with the help of
given index based on index
attribute of the option elements

selectByValue() Selects the option based on the
value attribute of the available
options

getOptions() Returns list of all the options

available as webelements, on the
select element

AutoComplete class:

AutoComplete class provides methods to handle a autocomplete element found on a webpage. Its
object is returned when we call findAutoComplete method from the TopDocument or Frame class

There are two methods in AutoComplete class which helps user in typing in the value to the field,
wait for the options to appear and then select the option appearing on the field, then wait for the
document to be ready for next action. All these actions are wrapped internally in to the following
methods

Methods
Name Arguments Description

setValue() Used when the autocomplete
values populated is just a normal
list of values and not appear as a
dropdown options in the html

selectValue() Used when the autocomplete
values populated are displayed in
options tag within the html page

So which method to used while using one of the above method to set an autocomplete field should
be made by inspecting the html tag of the list of options that gets autopopulated

ScriptExecutor class provides few predefined options to the users to perform actions on elements via
Javascript execution. Apart from the predefined options, users can also execute their own script by
providing the script to the executeScript method

Methods

Used when the autocomplete
values populated is just a normal
list of values and not appear as a
dropdown options in the html
Used when the autocomplete
values populated are displayed in
options tag within the html page
Sets the value attribute with the
given string for an element

Fires a given keyboard event like
onKeyPress/onKeyDown/onKeyUp
etc on a given element

Fires javascript click method on
the given element

Fires javascript right click method
on the given element

Returns the innertext or text
content for a given element
Executes given javascript code on
the top level page context

Apart from the classes we created to help create page objects and make the automation experience
on Selenium webdriver easier, we have also added lots of utility classes to the framework which can
be seen below.

These utility classes make it easier to handle few automation scenarios when there is some extra
java code is needed to automate the scenario.

Say, for example, we need to get the current date/month/year to be used in automating a scenario,
then instead of writing the code for getting the current date, you can use the DateUtil class methods
from the Framework and get these values with the help of predefined methods.

The javadocs on the methods for these framework classes should help you with what each of these
util class methods does.

v R = util
1) AssertUtil.java
Dg, DataBaselltil.java
|1} DataTestldUtil java
ﬂg Datalltil.java
11} Dateltil java
[J} ElementUtil java
Dg, Excelltil.java
441 FileUtil.java
[J} GlobalConstants.java
Hg, Grouphsserts,java
A1 HTTPUtLjava
ﬂg LocalizationUtil.java
1} LoggerUtils.java
11 MailUtil java
Dg, PDFUtIljava
[J} RecorderUtiljava
ﬂg ScreenshotUtil.java
11} WaitUtil java
11} XPathUtil.java

