
Pega Selenium Starter Kit - Running Tests

Contents
What’s this guide? ... 2

Prerequisites ... 2

Test Organization .. 2

Test Execution ... 2

Setting Global Properties ... 3

Maven Way ... 4

Cucumber Options ... 5

Selecting Tests to Run .. 7

Test Results ... 10

Interpreting Test Results Summary .. 10

Test Report.. 10

Cucumber HTML Report .. 10

Interpreting Cucumber HTML Test Report.. 12

Test Logs ... 12

Failure Diagnosis ... 13

Test Log & Results Summary .. 13

Test Report .. 14

Debugging ... 17

Debug Mode .. 17

Screenshot .. 17

Managing Timeouts ... 17

IntelliJ Tips .. 18

Running Tests .. 18

Related Documentation ... 18

References .. 18

What’s this guide?
This document describes how to execute CRM tests shipped out of the box with the Selenium Starter Kit.
It assumes that you have your test environment already configured to run the tests. If not, refer to the
setup guide for instructions to set up your environment and test project(s).

This guide uses Sales Automation application as an example, but the content is applicable to other CRM

applications that are part of this suite.

Prerequisites
 Successfully setup and built pega-crm-ui-testframework project.

If do not have the project ready, refer to the setup guide.

Test Organization
Test organization is an essential aspect of test design and development. A well-organized test bed can

facilitate better navigability as well as help with test selection. In this example project, Cucumber Tags

are used to organize features and scenarios. For example, here’s Opportunity.feature file that groups

all scenarios related to Sales Automation Opportunities feature.

@opportunity @smoke @smoke-sales-automation
Feature: Basic Opportunity flows
Tests covering the core Opportunity flow actions like Create, Change Stage and
Closing an opportunity.

Background:
 Given User logs in to SA Application as salesrep

@TC-create-business-opportunity
 Scenario Outline: Creating a Business Opportunities

 Given navigates to "Opportunities" List page
 When users clicks on Create OpprotunityButton and selects "<Opptype>"
 When Enters all the mandatory data for "<Opptype>"
 Then "<Opptype>" Opportunity should be created
 Then opportunity should have all the tabs

 Examples:
 | Opptype |
 | Business |

Tags not only serve the purpose of organizing tests but also offer a means for test selection. You will see

more on that in the following Test Execution section

Test Execution
Tests shipped with this kit are Cucumber/Gherkin based behavior driven (BDD) tests. Cucumber tests

can be run from command line using the CLI Runner, build tool or an IDE. In this project, we will use the

Maven build tool approach as an example.

https://pega.box.com/s/rtch81hois1gsln8ti3j34ouxe854s3o
https://community1.pega.com/documents/selenium-starter-kit-setup-guide
https://docs.cucumber.io/cucumber/api/#tags
https://docs.cucumber.io/cucumber/api/#running-cucumber
https://docs.cucumber.io/cucumber/api/#running-cucumber
https://docs.cucumber.io/tools/java/#build-tools
https://docs.cucumber.io/tools/java/#ides

Setting Global Properties
Global settings and test requirements are defined in <PROJECT_ROOT>/data/global-settings.properties.

Changing these settings will allow to customize test execution. The following tables show the list of

properties:

Application Information:

Property Description

instance.url URL of the application under test

Browser Configuration:

Property Description

browser.name Name of the browser used for testing. Supported browsers:

 chrome

 firefox

 ie

 safari

 htmlunit
chrome.driver
ie.driver
edge.driver
chrome.driver.linux

Path to the appropriate browser binaries/driver

isChromeAutoDownload By default, we attempt to download an appropriate chrome driver
automatically through our custom utility. If it fails, set this property to
false and copy the driver manually to binaries folder

Diagnostics & Debug Settings:

Property Description

debug.mode Boolean indicating whether to keep the browser open after test
execution

enable.fullscreen.mode Boolean indicating whether tests run in full screen mode
global.timeout Override maximum wait time for the web elements to load (secs).

Default timeout is 300 seconds.

Test Environment Configuration:

Property Description

hub.url URL to selenium grid hub for Cross Browser Testing.

If this is not set, tests run locally

capabilities Any custom capabilities provided by the external selenium grid providers like
crossbrowsertesting / saucelabs / browserstock.
Multiple capabilities can be provided by separating them with , and :

capabilities=capability1:value1, capability2:value2, capability3:value3, …..

Maven Way

Command Line

To use Maven CLI to run Cucumber tests, invoke the following command from the project root location:

…

Eclipse IDE

To run Cucumber with Maven from within the IDE, make sure Maven is installed, M2_HOME is correctly

configured, and the IDE is configured with the latest Maven installation. Refer to Maven setup in the

Setup Guide.

Before we trigger any test, make sure the screen resolution is set to 1920x1080 minimum, as this is the

minimum resolution to run the tests successfully. Also make sure the tests run in full screen mode by

setting enable.fullscreen.mode property to true in global-settings.properties file

To trigger test execution, in Eclipse IDE, right click on the pom.xml of the project and select Run As >

Maven test

Cucumber Options
Cucumber framework provides several options for configuring test execution. Typically, when running

tests from command line, these options can be provided in the Junit runner class using the

@CucumberOptions annotation. For example:

import cucumber.api.CucumberOptions;

import cucumber.api.testng.AbstractTestNGCucumberTests;

@CucumberOptions(plugin = {"pretty", "html:cucumber-htmlreport"})

public class RunCukesTest extends AbstractTestNGCucumberTest {

https://docs.cucumber.io/cucumber/api/#options

...

}

When using Maven, however, these options can be passed using the “-Dcucumber.options” argument as

follows:

>> mvn test -Dcucumber.options=<OPTS>

For example, the following command pretty formats the test report generated at the end of the test

execution:

>> mvn test -Dcucumber.options=“--plugin pretty --plugin

html:latestreports/cucumberhtmlreports”

Passing “-Dcucumber.options” argument to Maven command overrides options specified in the Junit

runner class.

In this project, the cucumber options are defined in the pom.xml file:

Selecting Tests to Run
So far, we looked at how to trigger test execution but how do we select what tests to run. This is where

Cucumber Tags come into play.

Generally, you define what tests to run in the Cucumber options specification. You select the features

and scenarios to run using Cucumber Tags (--tags) or Regular expression (--name) depending on how you

organize your tests.

In this sample CRM project, the OOTB tests are organized using tags. See Test Organization section for

more information.

Running tagged features/scenarios

Let’s assume you want to run all scenarios related to Sales Opportunities. The project organizes all sales

opportunities related tests with @opportunityfeatures tag.

Update the pom file to select appropriate tests:

1. Open the pom.xml file

2. In Properties section, double click on the tags property to set it to an appropriate value. In

this case, that would be @opportunity.

3. Click OK

4. If user wants to run multiple test cases in parallel then In Properties section, double click on

the threadCount property to set it to an appropriate value. For example, if user wants to run

three test cases parallelly , the value would be 3

5. Click OK

6. Run tests as usual using Maven commands

Tags can be used to group both scenarios as well as features.

Running a Cucumber feature

For rapid iterative development, you can also run a selected Cucumber feature file directly as shown
below:

1. In the feature file to run, Right click and select Run As > Cucumber Feature.

This will trigger execution of all scenarios within that feature file sequentially. Running a Cucumber

feature directly will produce the test result in the IDE console. A cucumber report will not be generated

with this mode of execution.

Here is a sample console report for running tests as a cucumber feature

Test Results
At the end of test execution, Eclipse Console window shows the test result summary as follows:

3 Scenarios (2 failed, 1 passed)
19 Steps (2 failed, 5 skipped, 12 passed)
7.702s

Interpreting Test Results Summary
 “3 Scenarios” reflects the 3 scenarios that are tagged with @opportunities tag

 “19 Steps” reflects the total number of steps across all scenarios being tested

 failed, skipped, passed reflect the status of scenario execution

Test Report
In addition to the results summary, test reports are produced for better visualization and analysis of test

results.

Cucumber HTML Report
Cucumber plugin for Eclipse enables producing a test report at the end of test execution. As defined in

the pom file, an HTML report is generated and placed in latestreports/cucumber-htmlreport folder.

latestreports/cucumber-htmlreport/index.html is the generated HTML report. Results are

also available in junit xml and json formats – cucumber-junitreport.xml and cucumber-

report.json

Interpreting Cucumber HTML Test Report
The HTML reports shows

1. Features & scenarios being tested along with their associated tags

2. Color-coded statuses for scenarios/steps executed

a. Green – successful execution of the scenario/step (passed)

b. Red – failed execution of the scenario/step (failed)

c. Blue – skipped execution of a step (skipped)

Test Logs
Logging is enabled in the framework via logback classic framework. An xml file logback-test.xml is

available in src/test/java source folder. Logging levels can be controlled via this xml file.

The default log level is debug (<root level="debug">) which can be changed to info/warn/error level to

minimize the amount of logs displayed to the console. A copy of these logs are also saved to

application.log file under logs folder as displayed below.

Failure Diagnosis
To illustrate diagnosing failures, we will force a failure by perturbing the expected value of the “Search

by organization” scenario in Sales Automation’s ClosePlan.feature

Scenario: Search by organization

 Given a sales rep is at the Close Plans page

 When the rep searches for "APW Technologies Corp" organization

 Then opportunities related only to "APW Inc" are shown

When a test fails, there are multiple diagnostics that help identify and debug the failure.

 Console Output

o Results Summary

o Failure Stack

 Test Reports

 Debug Options

Test Log & Results Summary
Scenario: Search by organization # salesautomation/features/ClosePlan.feature:6

 Given a sales rep is at the Close Plans page #

ForecastClosePlans.a_sales_rep_is_at_the_Close_Plans_page()

 When the rep searches for "APW Technologies Corp" organization #

ForecastClosePlans.the_rep_searches_for_organization(String)

 Then opportunities related only to "APW Inc" are shown #

ForecastClosePlans.relevant_opportunities_are_shown(String)

Forced

Failure

Failure Message

 java.lang.AssertionError: Expected organization 'APW Inc' not found. expected [true] but found

[false]

 at org.testng.Assert.fail(Assert.java:94)

 at org.testng.Assert.failNotEquals(Assert.java:494)

 at org.testng.Assert.assertTrue(Assert.java:42)

 at
com.pega.crm.salesautomation.stepdefs.ForecastClosePlans.relevant_opportunities_are_shown(ForecastClosePla
ns.java:65)

 at @Then opportunities related only to "APW Inc" are
shown(salesautomation/features/ClosePlan.feature:9)

 Failed scenarios:

salesautomation/features/ClosePlan.feature:6 # Scenario: Search by organization

1 Scenarios (1 failed)

3 Steps (1 failed, 2 passed)

0m36.495s

...

Results :

Failed tests:

 RunCukesTest>AbstractTestNGCucumberTests.run:19->AbstractTestNGCucumberTests.run_cukes:14 » Cucumber

Tests run: 1, Failures: 1, Errors: 0, Skipped: 0

Test Report
In addition to the test failure log displayed in the console window, Eclipse’s Maven surefire and

Cucumber plugins produces artifacts that highlight test failures

Failure Stack

Result Summary

The surefire-reports includes a main report, index.html and an e-mailable report, emailable-

report.html

The Cucumber plugin produces a Junit report

Note:

 Artifacts produced by Maven surefire and Cucumber plugin are subject to change by as defined

by those 3rd party plugins.

Debugging
The project provides the following diagnostic capabilities assist with failure debugging:

Debug Mode

The debug mode enables you to diagnose the problem when a UI test fails.

When the project setting debug.mode in data/global-settings.properties is set to true, this will

keep the application & browser open when a test fails. This allows you diagnose the application

at the point the test failed.

Screenshot

When a test fails, the framework automatically takes a screenshot at the failure point that can

provide insight and helps with defect localization.

Managing Timeouts

Sometimes, a page or UI element does not load, and the test is stuck indefinitely until the test is

aborted.

The project setting global.timeout in data/global-settings.properties allows you to specify the
maximum time in seconds the test waits for a page or UI element to load. When this time is
exceeded, the test is aborted and marked failed.

You want to set this time to a reasonable value, like 30 seconds. Setting this value high, e.g.
minutes, can have an effect on the performance of your tests. For example, if there is a
systemic issue in your application and every other UI element is not loading, your tests will wait

the maximum time before it aborts a test. This wait time adds up when you are running
hundreds of tests.

IntelliJ Tips
This section calls out a few aspects related to working with IntelliJ IDE

Running Tests
To trigger test execution the Maven Way, execute the Maven goal as follows:

Related Documentation
 Running tests in CI/CD pipeline

 Writing new tests

References
 Behavior Driven Development with Cucumber

https://community1.pega.com/documents/selenium-starter-kit-running-tests-cicd
https://community1.pega.com/documents/selenium-starter-kit-writing-tests
https://cucumber.io/training

	What’s this guide?
	Prerequisites
	Test Organization
	Test Execution
	Setting Global Properties
	Application Information:
	Browser Configuration:
	Diagnostics & Debug Settings:
	Test Environment Configuration:

	Maven Way
	Command Line
	Eclipse IDE

	Cucumber Options
	Selecting Tests to Run
	Running tagged features/scenarios
	Running a Cucumber feature

	Test Results
	Interpreting Test Results Summary

	Test Report
	Cucumber HTML Report
	Interpreting Cucumber HTML Test Report

	Test Logs
	Failure Diagnosis
	Test Log & Results Summary
	Test Report

	Debugging
	Debug Mode
	Screenshot
	Managing Timeouts

	IntelliJ Tips
	Running Tests

	Related Documentation
	References

